Введение в криптографию

       

Разложения на множетели


Имеются в основном два типа специализированных и универсальных алгоритмов разложения на множители. Специализированные алгоритмы разложения на множители пытаются эксплуатировать специальные особенности номера n разлагаемого на множители. Текущие времена универсальных алгоритмов разложения на множители зависят только от размера n.

Один из наиболее мощных специализированных алгоритмов разложения на множители - эллиптический метод разложения на множители кривой (режим исправления ошибок), который был изобретен в 1985 Х.Ленстром младшим. Текущее время этого метода зависит от размера главных множителей n, и следовательно алгоритм имеет тенденцию находить сначала маленькие множители. 21 июня  1995  Andreas Mueller (студент в Universitaet des Saarlandes, Германия) объявил, что он нашел  44-десятичную цифру  с 147-разрядным множителем   99-десятичной цифрой  с 329-разрядным составным целым числом, используя режим исправления ошибок. Вычисление было выполнено на сети АРМ, и долговечность была приблизительно 60 MIPS годы. Самый большой главный множитель, найденный к настоящему времени режимом исправления ошибок - 47-десятичная цифра  с 157-разрядным главным множетелем  135-десятичной цифры 449-разрядный номер. До развития RSA системы шифрования, лучший универсальный алгоритм разложения на множители был алгоритм цепной дроби , который имел числа множителя до 40 десятичных цифр (133 бита). Этот алгоритм был основан на идее относительного использования основы множителя штрихов и производства связанного с набором линейных уравнений, чее решение в конечном счете вело к факторизации. Та же самая идея лежит в основе лучших универсальных алгоритмов, используемых сегодня: квадратичное решето (QS) и решето поля цифр (NFS). Оба эти алгоритмы могут быть легко параллелизованы, чтобы разрешить разложение на множители на распределительных сетях АРМ. Квадратичное решето было разработано Карлом Померансом 1984. Первоначально, это применялось к числам множителя в 70-десятичной цифре  233-разрядный диапазон. В 1994  это использовалось группой исследователей во главе с А.Ленстром к множителю 129-десятичной цифры 429-разрядного номера проблемы RSA, который был изложен Мартином Гарднером 14 1977. Факторизация была выполнена через 8 месяцев примерно на 1600 компьютерах во всем мире. Долговечность для факторизации была оценена как 5000 MIPS годы.


Сначала было разработано в 1989 , что Решето поля цифр работает лучше всего на числах специальной формы. Алгоритм привык к множителю 155-десятичной цифры 513-разрядного номера. Это было впоследствии расширено к универсальному алгоритму факторизациию.  Эксперименты доказали, что NFS является действительно превосходящим алгоритмом для целых чисел разложения на множители, имеющих по крайней мере 120 десятичных цифр (400 битов). В 1996, группа во главе с А.Ленстром использовала NFS к множителю 130-десятичной цифры 432-разрядного номера. Это - самый большой номер, разложенный на множители до настоящего времени. Факторизация, как оценивали,  брала меньше чем 15 % из 5000 MIPS годы, которые требовались для факторизации 129-десятичной цифры проблемы RSA. Разложение на множители 155 десятичной цифры 512-разрядного номера могло брать меньше усилия  в 5 раз. 512-разрядный модуль n обеспечивает только крайнюю защиту , когда используется в RSA системе шифрования.


Содержание раздела